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1. ._Introduction | NASA TMX 57:2 7 1

The interpretation of astronamical observations is helped considerably by
a knowledge of the atomic processes which can take place in the constituent
elements of astronomical objects. In particular, by studying the observed
specirum one gets some idea of their chemical composition, density and temperature.
Many spe.ctral lines observed in gaseous nebulae, in auroras, and in the night
airglow are due to transitions,. among the terms of atomic systems, which involve
no change in the electron configuration of the system. Due to the conservation
of parity, these transitions are forbidden for electzj.c‘dipole radiation but 'are
allowed for electric quadrupole and magnetic dipole radiations. The transition
probabilities are of the arder (1 to 1072 )sec-1; campared with 10° sec™! for
permitted dipole lines. The strongest lines ;i.n the spectra of most nebulae are

1 1
due to the D2-3P2 and 1)2-31’1 magnetic dipole transitions in OIII

, which has the
configuration (18)2 (25)2 (2p)2 in both the initial and finsl states('). Indeed
there is considerable astrophysical interest in all the forbidden lines arising
from transitions between the three spectral terms of configurations’ 2pq and qu,
q=2,3,4 in a large number of atoms and ions. These lines can be excited by
electron impact. Consequently, it is of interest to predict theoretic:aily the
excitation ceross sections for electrons incident on atomic systems with configurations
(19)2 (2602 (22)% ana (10)° (29)° (20)° (39) ()% |

There is additional astrophysical interest in these transitions for at least
two reasons, Firstly, they play an important role in determining the electron
density distribution and the electron temperatures in the E and ¥ regions of the
upper atmosphere. Secondly, it has been pointed out by Branscamb and Pagel(z)
that the absorption of photons by atomic and molecular negative ions, especially
C~ and possibly O s may be of considerable importance in understanding the physical
properties of stellar photospheres. In order to compute the bound-free and free-free
absorption coefficients it is necessary to know the radial function describing the
motion of the electron, freed by photo-detachment,relative to the parent atom.

This is precisely the scattering radial function. N ce‘mﬁ
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Early calculations of the electron induced transitions in these atoms were
shown by Bates et al.(3 ), to exceed the conservation condition by a large factor.
Seaton in a series of papers(l") developed the theory of the continuum Hartree-Fock
eqpations and applied it to a variety of atoms and ions. However, owing to the
complexity both of the algebra and of the numerical evaluation of the resulting
equations only a few calculations of limited accuracy have been carried out,

5)

Recently,the theory has been extended by Seaton and applied by Shenming( to

calculations of transitions in 0III

. Both the methods of distorted waves and
exact resonance. were used in the solution of the resultant coupled integro;
differential equations. Recently, also, some exact solutions of a single second
order integro-differential equation describing the elastic scattering on the
ground state of C smeke® have been reported by Myerscough and McDowell(6) and on 0"
by Dalgarno, Henry and Stewart (72
In this paper the theory of scattering of electrons by atomic systems with

configurations 2pq and jqq » where g=0 to 6, is developed. Particular emphasis

is given to developing the formalism in a way which fakes full advantage of the
power of high speed digital computers to aid in the algebraic analysis as well

in solving the resultant equations. It is found that if a proper treatment of
exchange is adopted, then the post-prior discrepancy which troubled early woziers

in this field does not arise., Further, if only the terms in the ground state
configuration of the atom or ion are coupled then the n;:sultant integro-differential
equation can be easily solved without further approximation using fast compu'ters.
" There is very little point in attempting to simplify the equations to use approximate
solutions thus introducing further unnecessary errors and ambiguities.

It is convenient to discuss here in general terms the expected accuracy and

thus Jjustification of our approach for these transitions. It .is by now well known
that the close coupling expansion can give results of dubious accuracy for excitation.
Thus,in calculating the 1s-2s or 1s-2p excitation by electronimpact in atomic

- hydrogen the 1s-2s~2p close coupling approximation gives results much larger than

experiment (Burke and Smith(a)). It is not sufficient to include Jjust a few further’

-Pm



- excited states in the expansion but the whole series must be rearranged to obtain

faster convergence. However, for elastic scattering on the ground 1s state of
hydrogen the approximation obtained by retaining only the 1s state in the

expansion gives, when exchange is included correctly, ten per cent accuracy,

This is basically because the 1s state is well separated in energy from neighbouring

states and is thus weakly coupled. In atoms and ions with configurations (2p) 4
and (3p) 4 the ground state terms are also well isolated and weakly coupled to
other levels. The transitions amongst these terms, is thus more analogous to
elastic scattering in hydrogen than to excitation. Thus, provided all the airect
and exchange interactions between the terms are included correctly, as in this
paper, then the result can be expected to be of fairly high accuracy.

In Sec. (II), the form of the trial function to be substituted into a
variational principle is discusséd. The use of fhe principle itself and the
derivation of the continuum (i.e. scattering) Hartree-Fock equations is presented

in Secs. (III) and (IV). In the final section, (V) we report in detail the

. numerical methods we have developed to solve the cdupled systems of integro-

differential equations.



2 The Trial Wave Funciion

It will be assumed throughout this paper that the Hamiltonian is spin-
S and L respectively,

independent; consequently, both total spin and orbital quantum numbers/are
conserved. In order to take advantage of this fact we shall work in a
representation which is diagonal in both L and S. It is well known that only
approximate solutions can be given to the problems of collision theory; Seaton b
has shown that the only consistent means of obtaining anti-symmetric wave functions
in approximate solutions is to make the expansion explicitly antisymmetric,

Consider the collision of an electron with an atomic system with muclear
charge 2 and having N electrons, let the totally sntisymmetric (N+1) electron
wave function be

\rjzz,'g_czg_c} ceee Xpq > S ‘Y(I‘ji_)_()

where b3 denotes the spatial and spin coordinates of the ith electron and I'J. ='{J.
kj lj Lj S._j LSML MS is the complete set of quantum numbers required to specify

the atomic system ip the state j. The atomic term is labelled Ljsj’ the wave

number and the orbital angular momentum of the projectile are kj and lj’ respectively.
This (N«H) electron wave function can be expanded in terms of basis mnctiorxs which
are completely antisymmetric under interchange of the coordinates of a pair of

target electrons

N+1 :
. _ N+ - R S -1
I'J_, Eiooeo X g > = ij (=1) (N+1) ?'ri. Xy ro> Fij(ri) rT,

1
eee(1)

where ;_(_i denotes all the coordinates of the (N+1) electrons except ‘those of the
ith, and Fij(r) is the function which describes the radial motion of the impinging
electron in the channel ‘I‘i when the system was initially in the state Pj. The
sumation over I'i in (1) is restricted in practic e to go over the terms belonging
to the ground state configuration of the target. It will be shown below that the
functions F, ‘_j(r) satisfy coupled systems of second order ardinary integro-differential
equations with the boundary conditions

—dym



+1

Fij (r ) N rli

T >0

.
~ K2 ; .
K (Bia. sin 8, +@R; ; cos 8,) , k

2
Fij(r) - ; >0
e | 2 }oea(2)
ENCR 'Y r-]nil log 2k, r k<0
where ei = kir - 1i1t/2 -y log 214:i T+ o’li eee(3)

andn; = = (2 -N) / k.
and c’li =arg I'(l;+ 1+ :'mi)

The radial functions Fij(r> are cbntinugm Hartree-Fock orbitals; from the
properties of the surface harmonics Fij ()will be autamatically orthogonal to
atomic discrete orbitals with orbital quantum mmber 1)‘ * li' For closed
subshells, it follows fram the antisymmetry of Eq. (1) with respect to the
interchange of any two of the electrons that there is no approximation in

choosing Fij orthogonal to an]] even though lh might equal li. Thig may be
modified slightly if we choose approximate Hartree-Fock orbitals for the target
rather than exact H-F orbitals; however, in any case the overlap can be expécted to
be very small, For incomplete subshells, with 1)\ = li we can expect ¢

the overlap integral (Fij’P) ¥ 0. To take this effect into account, since it is
equivalent to the virtual capture of the impinging electron, we have imposed the

condition that F, ., are orthogonal to all discrete orbitals and added to Eq. (1)

J
an arbitrary amount of a wave function, Yo, correspording to a configuration with
one additional electron in the incomplete subshell, Thus, the trial wave function
for the (N+1) electron system in the state T initially,will be

Yt (I‘j;

eou()

1) = Ve (1)%(2)(2) 1y 5 x>+ 00y, [(15)%(28) K (2pf  isix ]



. Equation (4) can be interpreted as a statement of configuration interaction where
the first term represents an atomic system with one electron in a continuum
arvitalwhilein the second term all electrons are in discrete orvitals, The coefficients
Cj are determined from the variational principle given in the next section .

It is assumed that the orbitals P ) do not depend upon the term (e.g. 3P, D,

a
1S for carbon) but only on the configuration and Z. This assumption is vital
to our derivation and will be seen to greatly simplif'y the analysis. The error

incurred by this approximation can be expected to be small .



" . 3, . VYariational Principle
For the asymptotic normalization chosen in Eq.(2), it can be

shown, see Burke and Smith(s) , that
8L -M/2) = o eee(5)

provides the basis for a variational principle since the quantity (L-£/2) is

stationary with respect to variations
1
~ k.2
8F, () k] 56&15 cos 8 ...(6)
and arbitrery 503, where

Ly = LY (T 8) (- 2) ¥, (P55 ) & vee(D)

with the Hamiltonian of the full system being

N+ N+
= I (-4g? -L&y. 2 L
el 4ot Vi ri) 1> 3=t fz5 -;j‘. ...(8)

We will adopt atomic units with# = e = m = 1 throughout.
Upon replacing the first term of Eq.(4) by the expression given in (1)

and substituting the result for the first ¥, in Eq. (7) we obtain

1
L= f& [? (W) v, (T X7
i

X (HN+1 -E) wt (?l; l )9



having used the fact that HN+1 is symmetric and ¥ & is antisymmetric under the
interchange of all the coordinates of any pair of electrons. We have introduced

the notation

o y=(N+1) _ . (1) 2
Y (T 5% » Bypq) = lri’ 24 » Tet Oned > P Cnea) L (10)
TN+t

Now substitute the full form for ¥, inEq. (9) and note that the term i=N+1

is distinct from the other N terms to give

= [ (2w ey g Fan Ty, e f)
FEOUEF PRSI NONE SF DB PRI R A PICE)

In order to carry out the reduction of the six terms appearing in Eq. (11)

we consider separately, the direct term

Lig'sjl = <Y (i’lcN-H)’ (H‘:‘E) yl (3, £N+1) >» eee(12)

the exchange term
Lii, s10= = N<w (1, x4, (GE) 7 (35 %) ) ee(13)

terms linear in the arbitrary constants C
+1.% = @n? [Py, (BE) v ) >
Ly *Ig = or \HZF 2 Nilds 2y

+ Ck < Voo (H;lE) i wl (i‘§N+1) ?] : »0‘0(““') |
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" and finally terms quadratic in C

2
L.c 2 Ckcl

- <¥, (H;El) ¥ > ‘ eee(15)

To evaluate the matrix element given in Eq. (12), the functions v and .
‘11 are replaced by (10) with the composite function of target and spin-angle
parts of the projectile wave function being expanded out using Clebsch-Gordan

coefficients and Hartree-Fock wave functions for the target which are assumed to

satisfy

[T oz day Y (g oo 0 Iy si)f!HN'&ijEN(Lisé\ e (yeey5 LjSy) = O
.- o(16)

In other words, yHF are so chosen that HN is diagonal in that representation,

where the N electron Hamiltonian is defined in terms of the N+1 Hamiltonian by

N
-1
Hyew =Hy+Hy (51‘1+1)+a§_1 T Nel,a . .. (17)
where H,(x, ,) = - % 2 _ A
1\ EN01 ZVn T 2 .
rN-M

Using (10), (16) and (17) in (12) we obtain

2
D (&8 1.a4) 2
Lix, 51 ‘j_ ary g Fix (o) | - f( 2 ~Ad_+Z&Z ¢ ki) 83

N Thet? Thed

Ty ) | B o) ee(18)

rd



. -2 \y
where ki = 2 (8B (8 S;))

is in Rydbergs if E and EN are in units of 27.2097 eV, and where

s () S = (1)
Vis{Tee) = TE (T2 X » Inet%t) O, T BT X

> Ther ONet)
a=1 .

Axqe.-dxy Ay, dry

This expression for vij (r) has been shown by Bely, Tully and Regemorter9 to

reduce to

Vij(r) = Gia nz' ?iztzliego (Pno 10 Pno 1:; r)
subshells

‘+ 5Sisj 3q[(211*'1)(2L1+1)(21j+1)(2LJ.+1)]% 2;1 (2ne1)?

x (141 oo n0) (1 1 00/ Re) W(L,L, 1,15 L) 2 (1)Ll Lyl

Ly,

’ — \ 7 - . v a \ wfiT VAT, s \ P )
x(q Lisi/} LySy) (a Ly 8y l;uzazl ‘v‘v(lt-hhaj;fz LYY (Pnp Pnp»), )

where n is the principal quentum number of the outermost incamplete p~ subshell,
(ab oo‘ co) is a Clebsch-Gordan coefficient, W(abcd; ef) a Racah coefficient, both
in the phase convention of Blatt, Biedenhamand Rose © and (q L;S, i} L, Sz)
is the coefficient of fractional parentage.

In the evaluation of the exchange term, Eq. (13), we note that the matrix

eleaent <HN> will include and overlap integral

I ax iy FiQneg) Roplag,y) ~  vee(20)

=10=



which, as discussed in Sec. (II), we are going to set equal to zero. The matrix

element of the single electron Hamiltonian, H, (_)_CN+1), will contain a similar

factor to (20). Consequently, (13) simply becomes

Li‘k,jl == N [ axpee. a0, xe ) 4 ¥, (35 xg)s o.e(21)

| TeqInl

since those terms in Za with @ # N will all have overlap integrals like those

of (20). Equation (21) was evaluated using the methods of Hartree(”) and
Rapah(12) and we obtain

E _ ,
Lik,g1 & 9% T W33 F51

AR ' -1
='aia' i R (P ¢ Py Fa Pn:lo) (217 +1) (21, + 1)
nl

= closed
subshells

x (1" oo | 1io)2 - 3q [(21.l+1)(2Li+1)(2si+1)(213.+1)(2LJ.'+1)(2sj+1)]%

e T (. T a v N AT N+ Y w(s 13 + 88 )
x Ifs (g Iy 1'1 L, 52/ taly SJ ’2“2 52; \Bizz Si; 32;
22
L, ' L,
- J
xZ (11, oo r0) (2n+1 110 o|A
N ( 3 I ) ( ) ( 1 l 0) 1 A J'J RA (Pnp Fik FJl Pnp),
L, 1, L
...(22)
ad e
where R are the Slater integrals, and|c 4 e \is the Wigner 9j coefficient.
A £ g
’

1=



In the evaluation of the terms linear in C, both the matrix elements of HN

and E contain overlap factars as in (20) and the second term in (14) becomes

1
L, o= (NZ oK D orax ¥, @ [H () R InE, xg,)
i r
N+1,N
k
= C 25 [V, F,, ar,
where
5 &, Z

Vi(r) = (%)% [5.1 (a1 L8 [, 8) {(5S, 27 ) B
:12':1' 2(21 +1) yO(Pnl 1: tPnlll ;I') Pnp(r) +3q L;.s‘ ﬁsl s“.(q+1 1S ” LS )
= closed
subshells

x [3(21+ 1)(2n"+1)(2L,41) 2 (R T (g1 1, s,)
ALpS,

1 | | .
x(aLs; [l L8, (2w) (1100) 2 0) (11, 00 [» 0) w(1z 1, L; IA)

.
x W(1L" 1Ly; L, M) ¥ (Pnp Pnp;r) L (r) eee(2)
It is emphasized that the terms involving C will only appear if electrons are
scattered from target systems with incomplete outer p-subshells,

Finally we come to the evaluation of Eg. (15) which does not contain the

radial functions F ! Consequently, the matrix element will be simply a number

=12



2
c

L]d = Ckcl (EN+1 - E)

eee(25)
=ckcl (2 (a1 1s !} 1's’)?  EB('s’) -E
L's
+ Jar P (r)(’-‘£+1-z)P N -1 ¥ > ]
np -Ed.rz r2 po o (r) + <Yoer+1,N ‘ 0>

where the last matrix element is

, (a1 1s |} L's")
"

z, 2(21+1) R, (Pn’l' Pnp By Pnp) + 985 cq i's )

nl
= closed
subshella.

x (g1 LS |} s’ )xzz g(q L's' [} £8) (@ s’} £ 9 [(2L'+1)(2L"+1)]%

x (1100‘ 20)2 (2+1)"" WAL' 1 L' IA) W1 L' 1L 5 2 2)

4 L' +L"+ L+ 2 ees(26)
x R, (Pnp ; ) (1)

Defining Dij by

2 2
D_. =--% i' - li(li+1) +'2'—Z-+k. 5.. +v.. +W. » 010(27)
i dr2 3 r i ij ij ij
r

where Wij is an integral operator given by (22},

Eq. (5) can be written as

k
6 Z jJar FikDi;jF:j +C ; fdrVJ.F

i,d 1 J Jl

-13-



K
N farV Py +C cl(EM-E)-%] =0,  «..(28a)

J

Since we intend to impose the orthogonality of the continuum function to all

the discrete orbitals, then extra terms

by [oar Pnp (r) Fij (r) 6,1, J=k, 1 foralli e (28b)

' where p, are the Lagrange undetermined multipliers, must be added to Eq. (28a.
i /

-l



Le Radial Equations

Variation of (28) with respect to F_, gives

k
z apmnmjpjl skn+2_l Fiknimapmaln+c v apms

3 i in

1
+Chy San skn + ug Pnpgr) 8analm16kﬂ'pm Pnp(r) 6F . &, K 61n

+%a(&m 8 8y =0 ...(29}

' Using Green's theorem, the secord term in (29) can be rewritten and the result

is
1
J ar 88 (r) { &, [ % Doy Fou+C Vo +uy 61m1Pnp (r) ]
-0'(30)
k
+81n[ 21 Doy Fip * © vm+“m51n: Pnp (r) ]} = o
For arbitrary variations &F, subject to Eq. (6), then
1
Dm. Fjl (r) +¢C v+ zs%11 by Pnp (r) =0 ees(31)

‘are the system of integro-differential equations for the radial functions F .
m , J1
Variation of (28) with respect to C yields

5kn§ Jarv, Fo+ b );fdrviF

1 1

ik

+8_c (Byyq =E) + 56 (B, -B) = o, vee(32)

-] 5



" which is satisfied by
= (Byy =B I sarv () F_ (). v e(33)
1

Substituting equation (33) into (31) gives

1 ' '
F, z ) & =
% ij i1 (r) + E- g, Vm(r) jf ar V‘_i () Fgl (r") + 11 _o PnP (r) =0

eee(34)

These colepfl.ed )::L_ntegré-differe}xtial equations are solved by the methods described

in the next section to yield the radial functions F;jl (r)e The La,grangia.nl

| multiplier's p_ are adjusted so that the integrals (28b) are zero. The R matrix
can be simply determined from the asymptotic form of the functions F;‘»l (r) according
to equation (2a). From the explicit symmetry of the direct and exchange potenfials
in (34) it follows that the R-matrix is also symmetric and thus the resultant cross
section satisfies the required unitarity bounds. The 4ransition matrix T is then

defined in the usual way by the matrix relation

T=2iR/ (1- i R) ..+ (35)

and the cross section for the transition Li S:.L —> L. S, follows immediately

from an analysis similar to that givern by Lane and Thomas(13). It is defined by

by L21+1) (25+1)
21:_? (2 Li+1)(2si+1)

l'r.ljlz e e(36)

in x ai units, where L, S, ® are the total angular momentum, total spin and parity

of the system respectively and where 1i and 1 3 are the orbital anguler momenta of

..1_6_



tﬁe initial and final scattered electron states respectively.

In a typical case, for example the scattering of electrons by atomic
oxygen, conservation of L S and = implies that (34) reduces to a set of either
four of five coupled integro-differential equations for S=} depending on whether

L+n is odd or' even respectively.

-17=



e Computer Program to Solve Eguations

A FORTRAN program has been written to solve equations (34) for an electron
scattered by an atom or ion of arbitrary charge and with the 2p' or 3p shell
partially filled. The progrem uses subroutines for the Clebsch-Gordcm coefficient
(a bool co), the Racah coefficient W(a b ¢ d; e f) and the Wigner 9j coefficient
a b e
; %’ Zj and a table of relevant fractional parentage coefficients (q L1 S1 ‘ §L2 52).
With this information the program carries out the summationsinvolved in the definitions
of’ Via.(r), Wij and Vi (r) and decides, for a particular L S and = input values,
how meny equations in (34) are coupled and what the explicit form of all the
interaction terms are., It also decides automatically on the basis of the particular
atom or ion being considered and the energy of the incident electron, what intervals
to use in the numerical integration of (3%). The remaining information required
by the code in order to carry out the evaluation of the cross section defined by
(36) is the Hartree Fock arbitals for the atom or ion. It was found convenient,

to read in the analytical orbitals defined by Roothaan and coworkers(“") since
they are now available for most of the atoms and ions of interest.

The numerical solution of the resultant coupled equations (34) will now be
described, To ensble the soluiion of (34) to be obtained when some or all of ti\e
channels are virtual it was necessary to adopt a method of inward and outward
integration with subsequent matching to obtain a final continuous solution,

This is the method used by Smith and Burke(15). The integral terms in (34) are

(16)

treated non-iteratively following Marriott in order that any narrow resonant
effects may be determined without convergence difficulties (sze Burke and McVicar (17>}

Finally the asymptotic expansion method of Burke and Schey (18) was used to

determined the a\ -matrix from the functions F 5 Equation (34) can now be written
& Ia()r, @t (5 7, 2 B, (2)
i o= A,. () F, (v) + v, (p, ¥, )P (r
ar®  j=14 1 J k=1 BTN Vkk k

1

+ 20V, .+ 6li1 By PnP () eeo(372)

w8



where the suffix denoting the incident channel has been dropped since we require
all possible solutions of (37) consistent with the boundary conditions (2a),
Further the quantity ¢ in (37) is just that given in (33).

According to Hartree(11) , the functions y)‘(P F; r) satisfy the following

second order ordinary differential equation

.cﬁ (x y,‘) = A (A1) (¢ Y)‘) - (2a+1) E(zr) F(x)
2 .
dr r2 1‘ .-0(37b)
with the boundary conditions
r yk (r) ~ - r)‘ +1
' >0
..o (2b)
~A
r ¥, (r) ~ r
T o—>

We solve the equation (37) subject to the boundary conditions (2)
Vle now introduce the following definitions: The letter M denotes the number of
different F's, i.e. the mumber of channels; NE is the total mumber of exchange
terms appearing in all the F-equations., ILet NA be the number of open chanrels
(i.e. those channels for which ki2 > 0). We introduce the parameter NV which
is zero if all,Vi = 0, otherwise it is unity, Let NMJ be the number of Lagrange
multipliers in a given set of equations (37).

At r'=0 we define (M+NE) linearly independent solutions of the homogeneous

system of e quations i.e.

2 = B. 2 °~°(38)

Fy
Shere 2 = 5
'k

is a column vector which has (MN+NE) elements. Since Z(0) = 0, then (M+NE) of

the arbitrary constants are fixed and the independent solutions are gencrated by

-19-



setting the coefficients of the powers Fittor v ot the origin unity one at a

time with the others set equal to zero. These solutions are then integrated out
with C=ui = 0., A further (NV + N}&U) independent solutions of ﬂie inhomogeneous
system are generated by setting either C = 1 and all the By = 0, or setting orne of
the Hy equal to unity and the remainder; together with C, equal to zero. 1In this
way we define NIN = M + NE + NV + NMU linearly independent solutions at the origin.
These solutions are then integrated out to some matdl point denoted r, and the NIN
solutions are labelled :Z'.La‘. These solutions are combined with (as yet unknown)
coefficients v_, where a=1, ... , (M + NE), C and My to give the full solution'over
the rarge 0 ¢ r g T We choose to use the Runge-Kutta method to integrate from
r = 0 to a mesh point h ®# 0,01 and then the Numerov method from h to r.
Asymptotically, where r = r_, (#+NA) linearly independent solutionsof Eq. (38)

K Teach in

are generated by setting the coefficients of sin o’ s COS 6 and e
turn to unity, and the remaining coefficients to zerq where 0°= kr - m log 2kr and
ik=k, The asymptotic expansion of Burke and Schey is used to calculate the function
at T, and ('rB- H) where H is another, stepping increment, These solutions are
integrated in to some point rA, where the exponential terms in the various
potentials might be expected to begin contributing, At r, a further NE linearly

A
independent solution are generated by setting the coefficients of r')‘ in turn to
unity and all others to zero. A further (NV+NMU) independent solutions of the
inhomogeneous system are defined by setting C or oy equal t o unity as in the
inner region. The totality of outer solutions, NOUT = N+NA + NE + NV + NMU are
integrated from T, into 'ro and beyond to some 'ro'. These outer solutions are

labelled 9.1 Bo

£ T

In order that the solution be continuous over the whole damain O £ rg B

, it
is possible to impose continuity of functions and derivatives at any point, e.g.
at r , or the functions be continuous at a pair of poii\ts T, and r(') say. The

latter criterion was used in the computer program, and gives 2(M+NE) equations



¥+ NE
o c U — Y \
SRR I (e A0 B ERNCR

z v " i + n
a =1 @1 (r) C,' _ Y ¥ .
000(39)
M+ NE+NA
_ Bir ) ' Gy mw O o)
= 2z w i % \+2c i 9 0+ Jdi ©
p T Py

B =1 9 , B(r;) (‘3 s C(r;) y= 1 \5 i Y(?é) , |

for the 2(M+NE) + NA + NV + NMU unknown parameters U, ,w:ﬁ

(NV + NuU) equations are obtained by substituting the continuous solution given

, C and “’y‘ A further

by Eq. (39) into (33) and also into the equations obtained by requiring (20) to ve
zero.

The remaining NA equations are obtained by specifying that the coefficients
of the sine part of the R.H.S. of Eq. (39) in the asymptotic region equals

A
k.28, for j =1 to NA, That is
1 1J

B 1 ' 2 NA NA+i
%wﬁ Si - w:‘ gi +w2 gi +eoe +wm61 +.o. +“‘NA+.1 Si + sees

i . NA+i since the others do not contribute
@3 91 “Na+i 91 -

w, sin 8, +ay, . cos o, e.+(40)

where ei = kir =My log 2kir . from Eq. (22)

° 1
-2 . ¢ ’ .
Fij(r) ~k, [(sin 6, cos ¢i cos 87 sin ¢i) 5ij

’ . . .
+ (cos o, cos ¢i + 8in 0] sin ¢i) ﬁij]

-



where §, =1, 1;/241 *Combining this result with (40) gives the required
i .
NA equations

. . 4
J : Jd _ 1y =2
cos ¢i W, - sin ¢i Oaei = ki 51.5 eeel1)

where the superscript j denotes that the linear equations at the matching point
for the parameters 1).1 ese 4 must be solved NA times, with j characterizing these

matched solutions. The elements of the real symmetric reactance matrix are then

given by

&‘ij = kii [ sin ¢i wi‘j + cos ¢i @a o, i‘j IR oo o(82)

Having obtained the ﬁ matrix it is a simple matter of matrix manipulation

to obtain the T-matrix and cross section using equations (35) and (3).
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